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Abstract. In this investigation, we study the combined effects of a parabolic potential and a 
Coulomb impurity on the cyclomn resonance of a Ulreedimensional bound magnetopolaron, 
under the condition of strong parabolic potential. We only consider he c a e  of weak electron- 
Lo-phonon coupling and apply h e n ’ s  permrbation method to the calmlaion of energy levels. 
The polaron resonances in a low-lying energy level are studied and m a i n  cvclotron effective 
masses are +lculated. We apply our calculations to GaAs. 

1. Introduction 

In recent years there have been such great advances in expitaxial techniques for the growth 
of semiconductor structures that it is possible to grow wire-like structures [1-8] on the low- 
nanometre scale. There have been many experimental and theoretical studies on the optical 
properties of these quasi-one-dimensional quantum systems 18-13]. Changes in the optical 
properties due to lateral confinement, such as blue shift of the luminescence and splitting of 
the subbands, were studied [11-13]. Also, a drastic ‘change of the optical polarization 
selection d e s  m d  a large red shift of the photoluminescence and photoluminescence 
excitation spectra were observed 181. There have also been extensive studies on the 
electronic properties of quantum-well wires (QWWS): for example, the impurity-limited 
mobility [14,15]; the binding energy of hydrogenic impurity states in QWWs with finite or 
infinite square-well potential 116,171; the energy shifts and the effective mass of an electron 
and the exciton binding energies associated with the effects of the electron-Lo-phonon 
interaction [IS, 191; the mobility of electrons scattered by impurities and by acoustic and 
polar optical phonons [ZO]; and the scattering of electrons by polar optical phonons 121,221. 

In most of the above-mentioned theoretical works conceming the quantum wire, the 
electron is assumed to be confined within a square-well potential. ~ This is obviously not 
the realistic case since the potential of the electrons (apart from the Coulomb potential due 
to impurities) within the wire should not be zero. Indeed, Kash et a1 1231 have recently 
observed good evidence for the existence of a parabolic potential well in a quantum wire 
produced by strain gradients using a pattemed carbon stressor, so it is significant to study 
the effects of the parabolic potential on the electronic properties in a quantum wire. In 
fact, Yildirim and Ercelebi 124,251 have theoretically achieved the effective reduction of 
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Here the electron has position vector T = ( x ,  y ,  z )  and momentum P = (Pz7 Pr, Pi). q o  
is the bulk Lo phonon frequency and q = (qx, qy.  qz) is the bulk phonon wave vector. 
a4 and a: are the annihilation and creation operators of the bulk M phonon, respectively. 
Also, m is the electron band mass and V is the volume of the crystal. Finally, cm and CO 

are the optical and static dielectric constants, respectively. 

3. The method of solutions 

The total Hamiltonian H (1) representsfa complicated system. We cannot findout the exact 
solutions even when the polaron effects are completely ignored. We would like to point out 
that there is a special~case in which H can be solved by using a perturbative method, namely, 
the case where I/* is small, where 1 = @/mwei)'j2 with wes = J- is the effective 
radius of confinement of the electron in the xy-plane (see (7)). and a0 = 4rrs,fi2/me2 is the 
Bohr radius (which is also the radius of the ground state of the onedimensional hydrogen 
problem P:/2m - e2/4mmlzl). Under the condition that I/* is small, the motion of the 
electron in the xy-plane is strongly confined to the origin. Hence (( IzI or 

l / r  = l/J-~= 1/1i1 

- e2/4mmr = -e2/4rr~mlzl + (-2/4rr.zmr + e2/4ircmlil) 

In view of this approximation, we will write the Coulomb term as 

(4) 

and treat the second term on the right-hand side of (4) as a small perturbation. 
lino can be expressed as 

l/ao = (rp/ao)Jz/[(o/wm)2 + ' ; ( W , / W ~ ~ ~ I ' ~ ~  
where rp = ( h / 2 m w ~ o ) ' / ~  is the polaron radius. In the case of GaAs (cm = 10.9, 
hwm = 36.63 meV, and m = 0.066me (me is the electron bare mass)), we have 
rp/* = 0.454. Since B = 40 T is practically a very high magnetic field, we will only 
consider the range 0 < B d 40 T, or 0 d wC/wm 4 2. The condition of l/ao 6 0.32 or 
(llao)' < 0.1 is sufficient for the above-mentioned perturbative treatment of the Coulomb 
term. For any value of B between 0 T and 40 T, we use the above explicit formula for E/ao 
to determine the minimum value of the parabolic frequency w that makes l/ao < 0.32. We 
find that w = 4.030~0 for B = 0 T, and w = 3 . 9 ~ ~ 0  for B = 40 T. Hence we will study 
the cyclotron resonance problem in the region 0 < B < 40 T and w 2 40~0.  Also, we will 
only consider the case of weak electron40-phonon coupling, where Lasen's perturbation 
method is applicable. 

Correspondingly, we rewrite the total Hamiltonian H as follows: 

H = H + xRwma,+a ,  + H I  



6764 T C Au-Yeung et ul 

The condition I/ao Q 0.32 means that 1 Q 0.32~10 = 2.8 nm, or that the wire diameter 
(21) is less than 5.6 nm. This dimension is more than an order of magnitude smaller than 
current technology allows. Also, present quantization energies lie in the range fio = 1- 
10 (at most) meV in G A S ;  the strong parabolic potential condition o 4wL0 means 
fio N 150 meV. 

To summarize, A H  will be treated as a perturbation to Ho, and we will in turn treat 
HI as a perturbation to e + Cqfiw~~aq+aq.  We will adopt Larsen's approach and use the 
Wigner-Brillouin perturbation theory (WBPT) in the case of the resonant polaron. 

The energy levels and states of HO are given below I59.601: 

= (2n + Iml + l)fioe~ + $hoc - ( l / k z ) R y  (W 

m:L.k = q n , m ( x ,  Y M ~ ( Z )  (6b) 

n = 0 , 1 , 2  ,... m = O , & l , f 2  ,... k = l , 2 , 3 , . .  

Here n is the Landau quantum number and m is the z angular-momentum quantum 
number. &(z) and &(z) are the energy states of the one-dimensional hydrogen problem 
P:/2m - e2/4rr&&l, with even and odd parity, respectively. Liz/+n and Li a e  the 
associated Laguerre polynomials. R, = me4/32n2&fi2 is the Rydberg constant, o, = 
e B / m  is the cyclotron frequency, = Jm, and 1 = (fi/mwedl/' is the effective 
radius of confinement in the xy-plane. Finally, p = and 0 = tan-'(y/x). 

Let L?nn.m,k be the energy levels of f?. We have, to the first order of perturbation, 

&.m.i = EA:L,k + (Q:i,kIAHI@:L.k). (9) 

Next, let &.,,,.k.i be the energy levels of e + E, fiw~oa,ia,, where the index i is equal to 
the number of phonons. We have 

- - 
&,m,k,i = Eqm,k + ifiom. (10) 

We will only consider the case of zero temperature, so we will restrict our discussions 
to the case of zero number of phonons, that is, i = 0. Let 8Enm,,,,  be the perturbation on 
, @ n n . m . ~ . ~  due to the Frohlich Hamiltonian HI. We have, to the second order of Rayleigh- 
Schrodinger perturbation theory (Rskr), 

(el-ph) 

(d-ph) - 
%.,,k.O - - c l(@:!m,,k, I(nlf4 IOn) I@~:~.k) l2 /@~L0 + Bn, .m, ,k ,  - B n . m . d  

nl .mj .h .Y 
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(1 /IS?) I Wwn (x  9 Y) IGqll.PI Yn,, ,  .mt (x  9 Y ) )  121 (@k (2) Ieiqxz I&, (2)) 1' 
@@LO f innl.ml.kl - - 6 w . k )  n1.ml.kl.q 

(11) 

= ( x ,  y) and qll = (qx, qy). The perturbed energy levels are, up to the second where 
order of perturbations, 

- 
(12) (e1-N 

En.m.k.0 = En,m.k f a E n , m , k , o .  

The condition of polaron resonance is, from equation (ll), determined by 
- - 

En,m,k = Em,m, ,k ,  (13) 

for certain sets of nl, ml, and k,. We will use the WBFT in the case of the resonant polaron. 
Thus, we solve the following equation for En,,,,,t.o: 

(1/Iq12)I W n , m ( x y  yW~.pI*nl.ml (x .  Y ) )  I ' I~@k~z~Ie '~~ ' IW,  ( z ) )  1' 
ni.ml,ki .q (8" f &nl,ml,tl - En.m.k.0) 

( 1 2 4  

The numerical method will be used to soIve (12~).  We plot a straight line of slope of 45" 
representing the left-hand side of (12u), and a curve representing the right-hand side of 
(12a). The intersections of the straight line and the curve are the solutions we want. 

4. Results and discussion 

We will consider the following three cyclotron resonance frequencies: 

4C0, -1, 1) = (Eo.-i.i.o - E o , o , i , o ) / h  

WECO, 1, 1) = (E0,i.i.o - Eo,o,i,o)/h 
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and 
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wI(0, 0.2) = (Eo.o.z.o - Eo.o,i.o)lfi. 

The corresponding cyclotron effective masses are respectively 

m*(O, -1, 1) = m f i o ~ ~ ( ~ o , - ~ . ~ . o  - Eo.o,~.o)-~ 

m*(O, 1, 1) = m f i ~ d E o . i . ~ , o  - Eo.o.i.o)-' 

and 

m*(O, 0,2) = mfi~c(E00.0.2.0 - EO.O.~.O)-~ 

where nr is the electron band mass. 
The condition of polaron resonance is determined by 

- 
k .m,r  = fiw + En,,",,k,.  (13) 

The polaron-resonance condition (13) is different from the polaron-resonance condition of 
the well investigated case of no Coulomb impurity and no parabolic potential. From the 
formulae ( 6 4  and (9). we see that the (resonant) values of the cyclotron frequency a,, at 
which (13) is satisfied, are dependent on the parabolic potential and Coulomb impurity. In 
the region 0 T < B < 40 T, the lowest energy level in which polaron resonance occurs is 
E0,l.l.o. Putting (n, m,  k) = (0, 1, 1) in and solving numerically equation (13), we find that 
numerous energy levels intersect 4 1 . 1  - h m  at various values of w,, specifically, those 
energy levels E~,- l .k ,  where k = 1,2, 3 , .  . .. Since the index k is the quantum number of 
the one-dimensional hydrogen problem, as can be seen from equation (64, we conclude that 
this complicated behaviour of the polaron resonance is due to the presence of the Coulomb 
impurity. On the other hand, when there is no Coulomb impurity or parabolic potential, it 
is well known [33,411 that the lowest energy level in which the polaron resonance occurs 
is n = 1, where n is the Landau quantum number, and the resonant value of the cyclotron 
frequency is 

0, = wm. (16) 

For simplicity, we will only consider the polaron resonances due to the intersection of 
$ . 1 . 1  and &,-I,I + f i w ~ o ,  and of !O,J,I and Eo,-~ ,~%trou ,  (i.e. k = 1,Z). For illustration, 
we apply our calculations to the case of G A S ,  where a = 0.067 (weak electron-phonon 
coupling). The numerical results are shown in figures 1-4. 

In figure I(u) and (b) ,  the energy level Eo.l.l.0 is plotted against the cyclotron frequency 
w,, with two different values of the parabolic frequency, namely, w = 4~1.0 and w = Swm, 
respectively. In both of ( U )  and (b), the dashed lines represent the unperturbed energy levels 
$ . I . I ,  ,@0,-1.i + f i w ~ o  and 80,-1,2+%w, and the solid lines and dotted lines represent the 
energy level Eo,l,l,o. For u = 4 ~ ~ 0 ,  the polaron resonances occur at a, = 1.0000~0 and 
w, = 1.0830~0 (see figure I@)). In theregioneitheron the left-hand sideofu, = I.oooW, 
or on the right-hand side of wc = 1 . 0 8 3 ~ ~ 0 ,  the RSF? (11) and (12) is used to calculate 
Eo,l,l,o and the result is represented by the two solid lines, while in the region around 
w, = 1.0000~0 and w, = 1.0830~0, we use the WBPT (124 to calculate EO,I,I,O and the 
result is represented by three dotted lines, as is shown in figure I@). Next, for w == 5 0 ~ 0 .  
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the polaron resonances occur at O, = 1.0000~0 and w, = 1.08940~0 (see figure l(b)), and 
we use the RSPT and WBPT to calculate EO,I,I,O in a similar way as in the case of o = 40~0. 
We would like to point out that the pinning effect also exists in the presence of the Coulomb 
impurity and parabolic potential, and it is represented by~the lowest dotted line in figure 1. 

From the above discussions, we see that there is more than one resonant value of O, and 
the greater one is different from that of the case of no Coulomb impurity and no parabolic 
potential, where we have wc = OLO (see (16)). We would like to re-iterate that the presence 
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of the Coulomb impurity and parabolic potential change the resonant values of 0,. 
As mentioned above, we have for simplicity omitted the other polaron resonances due 

to the intersections of Eo.1.1 - f i w ~ o  and Eo.-l.n, where k = 3.4, . . .. We would like to 
point out that in principle if we take all these other polaron resonances into account and 
solve for Ea,l,l,o using the WBFT (12a). we will obtain numerous (i.e. much more than three) 
solutions, leading to numerous dotted lines representing Eo.l,l,o in both figure l(a) and I@). 

- - 
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Figure 3. The cyclotron frequency dependence of the cyclotron effective mass m*(O, 0,Z) of 
Ihe three-dimensional bound magnetapolmn for the case of GaAs (i) at w = 4wro and (b) at 
bl = 50'0. 

We would like to stress again that this complicated behaviour of polaron resonance is due 
to the combined effects of the Coulomb impurity and electron-Lo-phonon intersection. 

In figures 2 4 ,  the cyclotron effective masses given by (15) are plotted against o, for 
the case of GaAs, with w = -40~0 and o = Som. From figures 2 and 3, we see that 
both n*(O, -1 , l )  and m*(O,O, 2) increase with o, for a fixed value of o, and figure 4 
shows that n*(O, 1,l) is multi-valued for each value of o, in the region around the polaron 
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Figure 4. The cyclotron frequency dependence of the cyclotron effective mass m*(O. 1. 1) of 
the three-dimensional bound magnetopolaron for the case of GaAs in) at w = 4 w m  and ( b )  at 
w =sum.  

resonances. This is due to the fact that Eo.,,,.o behaves in a complicated way in the case 
of the resonant polaron, as is discussed above. 

5. Conclusion 

In this investigation, we studied the combined effects of the parabolic potential and Coulomb 
impurity on the properties of the cyclotron resonance of a bound magnetopolaron in polar 
crystals of weak electron-Lo-phonon coupling, under the condition of strong parabolic 
potential (o > 4 ~ ~ 0 ) .  Under the above condition, we adopted the decomposition (4) of the 
Coulomb term and treat the term A H  and the Frohlich Hamiltonian as perturbations. We 
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followed Larson’s perturbative approach to calculate some low-lying energy levels and the 
corresponding cyclotron effective masses. 

4 ~ ~ 0 ,  the lowest 
energy level in which polaron resonance occurs is E0.1.1.0, and it is multi-valued for each 
value of w, around the resonant values of 0,. We concluded that the energy level 
splits into numerous sub-levels under the combined effects of the Coulomb impurity and 
electron-L-phonon interaction. We also found that the ‘pinning effect’ exists in the 
presence of the Coulomb impurity and parabolic potential. Further, some of the (resonant) 
values of the cyclotron frequency w, (at which the resonance condition (13) is satisfied) were 
found to be different from the case of no Coulomb impurity and no parabolic potential, and 
they are dependent on the parabolic potential frequency W .  Finally, the cyclotron effective 
masses corresponding to some low-lying energy levels were calculated and we found that 
for fixed w they increase with U,, with a remarkable feature in the polaron resonance in 
that they are multi-valued. 

We applied our calculations to GaAs. We found that for each w 
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